DIALOGUE MODELING & REASONING

Maria Boritchev January 27th, 2023

Orange Labs, Lannion, France

 $B_2\,$ What kind of tea do you have?

→ Semantics: compositionality

 $B_2\,$ What kind of tea do you have?

- → Semantics: compositionality
- → Context: dynamicity

- A1 Does Charlie want tea or coffee?
- B₂ What kind of tea do you have?
- A₃ Earl Grey
- B₄ I think Charlie would rather have coffee
 - → Semantics: compositionality
 - → Context: dynamicity

- A1 Does Charlie want tea or coffee?
- B₂ What kind of tea do you have?
- A₃ Earl Grey
- B₄ I think Charlie would rather have coffee
 - → Semantics: compositionality
 - → Context: dynamicity
 - → Reasoning: logic

NEGOTIATION PHASES

Picturing questions and answers – a formal approach to SLAM, Maria Boritchev, Maxime Amblard, (In)coherence of discourse – Formal and Conceptual issues of Language, Springer, 2021.

We want to:

- Produce formal models for semantics of natural languages (logical, compositional, dynamic)
- Produce formal models for semantics of dialogue (**negotiation phases**)
- That would behave well on non-controlled data (lexicality, flexibility)
- And provide stable grounds for reasoning studies

Towards:

- → Better quality data generation
- → Hybrid approaches: combining machine learning techniques and logic representations
- → Dialogue studies: clinical applications

Dialogue annotation for modeling

Formal semantics – dialogue & models

Dialogues and reasoning

DIALOGUE ANNOTATION FOR MODELING

Toward Dialogue Modeling: A Semantic Annotation Scheme for Questions and Answers, Maria-Andrea Cruz-Blandón, Gosse Minnema, Aria Nourbakhsh, Maria Boritchev, Maxime Amblard, LAW XIII 2019 – The 13th Linguistic Annotation Workshop, 2019.

Tag	Name
ΥN	yes/no-question
WH	wh-question
DQ	disjunctive question
CS	completion suggestion
PQ	phatic question

Table: Set of question tags.

File	ID	Question	YN	wн	cs	DQ	PQ	N/A
ding3-1.txt.ufo	985	O:[dés]						
ding3-1.txt.ufo	986	W:[rire]						
ding3-1.txt.ufo	987	W:pourquoi c'est toujours comme ça ?		1				
ding3-1.txt.ufo	988	O:[dés]						
ding3-1.txt.ufo	989	R:10						

O [dice]

W [laugh]

- W why is it always like that?
- O [dice]

R 10

File	ID	Question	YN	wн	cs	DQ	PQ	N/A
ding3-1.txt.ufo	985	O:[dés]						
ding3-1.txt.ufo	986	W:[rire]						
ding3-1.txt.ufo	987	W:pourquoi c'est toujours comme ça ?					1	
ding3-1.txt.ufo	988	O:[dés]						
ding3-1.txt.ufo	989	R:10						

- O [dice]
- W [laugh]
- W why is it always like that?
- O [dice]

R 10

English Saarbrücken Corpus of Spoken English (SCoSE), corpus of face-to-face conversations [Norrick, 2017]

Spanish CallFriend corpus for Spanish, corpus of phone conversations

[Canavan and Zipperlen, 1996]

Dutch Spoken Dutch Corpus (CGN), corpus of phone conversations [Oostdijk, 2001]

French Dialogues in Games corpus (DinG), corpus of face-to-face conversations, A Multi-Party Dialogue Ressource in French, Maria Boritchev, Maxime Amblard, LREC 2022 – 13th Edition of Language Resources and Evaluation Conference, 2022

English Saarbrücken Corpus of Spoken English (SCoSE), corpus of face-to-face conversations [Norrick, 2017]

Spanish CallFriend corpus for Spanish, corpus of phone conversations

[Canavan and Zipperlen, 1996]

Dutch Spoken Dutch Corpus (CGN), corpus of phone conversations [Oostdijk, 2001]

French Dialogues in Games corpus (DinG), corpus of face-to-face conversations, A Multi-Party Dialogue Ressource in French, Maria Boritchev, Maxime Amblard, LREC 2022 – 13th Edition of Language Resources and Evaluation Conference, 2022

	YN	WH	DQ	CS	PQ
SCoSE	42.2%	23.5%	1.2%	1.7%	31.5%
CallFriend	39.9%	33.0%	1.6%	1.1%	24.5%
CGN	64.4%	26.4%	1.2%	0%	8.1%
DinG	57.78%	23.82%	3.90%	0.32%	12.18%

Table: Annotation results and comparision

FORMAL SEMANTICS – DIALOGUE & MODELS

CSDS Compositional Style Dynamic Semantics, [de Groote, 2006]

NDES Neo-Davidsonian Event Semantics, [Parsons, 1995], Quantificational Event Semantics [Champollion, 2011], [Winter and Zwarts, 2011]

→ Sentence

CSDS Compositional Style Dynamic Semantics, [de Groote, 2006]

NDES Neo-Davidsonian Event Semantics, [Parsons, 1995], Quantificational Event Semantics [Champollion, 2011], [Winter and Zwarts, 2011]

→ Sentence

CSDS Compositional Style Dynamic Semantics, [de Groote, 2006]

→ Sentence in context

NDES Neo-Davidsonian Event Semantics, [Parsons, 1995], Quantificational Event Semantics [Champollion, 2011], [Winter and Zwarts, 2011]

→ Sentence

CSDS Compositional Style Dynamic Semantics, [de Groote, 2006]

- → Sentence in context
- NDES Neo-Davidsonian Event Semantics, [Parsons, 1995], Quantificational Event Semantics [Champollion, 2011], [Winter and Zwarts, 2011]
- → Sentence and its semantic constituents

→ Sentence

CSDS Compositional Style Dynamic Semantics, [de Groote, 2006]

- → Sentence in context
- NDES Neo-Davidsonian Event Semantics, [Parsons, 1995], Quantificational Event Semantics [Champollion, 2011], [Winter and Zwarts, 2011]
- → Sentence and its semantic constituents
- IS Inquisitive Semantics, [Ciardelli et al., 2018]

→ Sentence

CSDS Compositional Style Dynamic Semantics, [de Groote, 2006]

- → Sentence in context
- NDES Neo-Davidsonian Event Semantics, [Parsons, 1995], Quantificational Event Semantics [Champollion, 2011], [Winter and Zwarts, 2011]
- → Sentence and its semantic constituents
- IS Inquisitive Semantics, [Ciardelli et al., 2018]
- → Declarative and interrogative sentences

every farmer fed a donkey Agent event Patient

$\forall x. \exists y. \exists e. fed(e) \land farmer(x) \land donkey(y) \land Agent(e, x) \land Patient(e, y)$

$\forall x. \exists y. \exists e. fed(e) \land farmer(x) \land donkey(y) \land Agent(e, x) \land Patient(e, y)$

$\forall x. \exists y. \exists e. fed(e) \land farmer(x) \land donkey(y) \land \textbf{Agent}(e, x) \land \textbf{Patient}(e, y)$

Who fed a donkey? Whom did every farmer feed? $\forall x. \exists y. \exists e. fed(e) \land farmer(x) \land donkey(y) \land Agent(e, x) \land Patient(e, y)$

Who fed a donkey? Whom did every farmer feed?

WHICH is the agent of the feeding event whose patient is a donkey? WHICH is the patient of the feeding event whose agent is every farmer?

- NDES is compositional.
- We can interrogate the content of thematic roles.
- How to compute the semantic representation of interrogative sentences?

Donkey (D)

Unicorn (U)

Unicorn (U)

Are they hungry?

$\llbracket \mathsf{D} \text{ is hungry} \rrbracket = \llbracket \phi_1 \rrbracket = \{ \{ \mathsf{Y}\mathsf{Y}, \mathsf{Y}\mathsf{N} \}, \{ \mathsf{Y}\mathsf{Y} \}, \{ \mathsf{Y}\mathsf{N} \}, \emptyset \}$

$\llbracket \mathsf{D} \text{ is hungry} \rrbracket = \llbracket \phi_1 \rrbracket = \{ \{ \mathsf{Y}\mathsf{Y}, \mathsf{Y}\mathsf{N} \}, \{ \mathsf{Y}\mathsf{Y} \}, \{ \mathsf{Y}\mathsf{N} \}, \emptyset \}$

$[D is hungry]] = [[\phi_1]] = \{ \{YY, YN\}, \{YY\}, \{YN\}, \emptyset \}$ [U is hungry]] = [[\phi_2]] = { {YY, NY}, {YY}, {NY}, \\$

 $[D is hungry]] = [[\phi_1]] = \{ \{YY, YN\}, \{YY\}, \{YN\}, \emptyset \}$ [U is hungry]] = [[\phi_2]] = { {YY, NY}, {YY}, {NY}, \\$

$$\begin{split} \llbracket \phi_1 \lor \phi_2 \rrbracket &= \llbracket \phi_1 \rrbracket \cup \llbracket \phi_2 \rrbracket \\ &= \{ \{ \mathsf{YY}, \mathsf{YN} \}, \{ \mathsf{YY}, \mathsf{NY} \}, \{ \mathsf{YN} \}, \{ \mathsf{NY} \}, \{ \mathsf{NY} \}, \emptyset \} \end{split}$$

$$\begin{split} \llbracket \phi_1 \lor \phi_2 \rrbracket &= \llbracket \phi_1 \rrbracket \cup \llbracket \phi_2 \rrbracket \\ &= \{ \{ \mathsf{YY}, \mathsf{YN} \}, \{ \mathsf{YY}, \mathsf{NY} \}, \{ \mathsf{YN} \}, \{ \mathsf{NY} \}, \{ \mathsf{NY} \}, \emptyset \} \end{split}$$

$$\begin{split} \llbracket \phi_1 \lor \phi_2 \rrbracket &= \llbracket \phi_1 \rrbracket \cup \llbracket \phi_2 \rrbracket \\ &= \{ \{ \mathsf{Y}\mathsf{Y}, \mathsf{Y}\mathsf{N} \}, \{ \mathsf{Y}\mathsf{Y}, \mathsf{N}\mathsf{Y} \}, \{ \mathsf{Y}\mathsf{N} \}, \{ \mathsf{N}\mathsf{Y} \}, \{ \mathsf{N}\mathsf{Y} \}, \emptyset \} \end{split}$$

"is D or U hungry?" (knowing that someone is hungry)

 $[\![\phi_1 \lor \phi_2]\!]$

 $[\![\phi_1 \lor \phi_2]\!]$

 $\llbracket ! (\phi_1 \lor \phi_2) \rrbracket$

 $\llbracket \phi_1 \lor \phi_2 \rrbracket$

 $\llbracket ! (\phi_1 \lor \phi_2) \rrbracket$

 $\llbracket ?(\phi_1 \lor \phi_2) \rrbracket$

In a model $\mathcal{M} = \langle D, W, I \rangle$, given a valuation ξ from \mathcal{X} to D:

$$\llbracket \exists \mathbf{x}.\phi \rrbracket_{\xi} = \bigcup_{\mathsf{d}\in\mathsf{D}} \llbracket \phi \rrbracket_{\xi[\mathbf{x}:=\mathsf{d}]}$$

In a model $\mathcal{M} = \langle D, W, I \rangle$, given a valuation ξ from \mathcal{X} to D:

$$\llbracket \exists \mathbf{X}.\phi \rrbracket_{\xi} = \bigcup_{\mathsf{d}\in\mathsf{D}} \llbracket \phi \rrbracket_{\xi[\mathsf{X}:=\mathsf{d}]}$$

(1) ∃x.hungry x

(1) Somebody's hungry. Who?

In a model $\mathcal{M} = \langle D, W, I \rangle$, given a valuation ξ from \mathcal{X} to D:

$$\llbracket \exists \mathbf{x}.\phi \rrbracket_{\xi} = \bigcup_{d \in \mathsf{D}} \llbracket \phi \rrbracket_{\xi[\mathbf{x}:=d]}$$

(1) ∃x.hungry x

(2) !∃x.hungry x

(1) Somebody's hungry. Who?

(2) Somebody's hungry.

In a model $\mathcal{M} = \langle D, W, I \rangle$, given a valuation ξ from \mathcal{X} to D:

$$\llbracket \exists \mathbf{x}.\phi \rrbracket_{\xi} = \bigcup_{d \in \mathsf{D}} \llbracket \phi \rrbracket_{\xi[\mathbf{x}:=d]}$$

- (1) ∃x.hungry x
- (2) !∃x.hungry x
- (3) ?∃x.hungry x

- (1) Somebody's hungry. Who?
- (2) Somebody's hungry.
- (3) Who is hungry?

• NDES gives us access to thematic roles, through a unique wh-word WHICH

- NDES gives us access to thematic roles, through a unique wh-word WHICH
- IS gives us the formalisation for WHICH: the inquisitive \exists

- NDES gives us access to thematic roles, through a unique wh-word WHICH
- IS gives us the formalisation for WHICH: the inquisitive \exists
- ACGs give us the architecture of our model

- NDES gives us access to thematic roles, through a unique wh-word WHICH
- IS gives us the formalisation for WHICH: the inquisitive \exists
- ACGs give us the architecture of our model

Surface Forms

- NDES gives us access to thematic roles, through a unique wh-word WHICH
- IS gives us the formalisation for WHICH: the inquisitive \exists
- ACGs give us the architecture of our model

- NDES gives us access to thematic roles, through a unique wh-word WHICH
- IS gives us the formalisation for WHICH: the inquisitive \exists
- ACGs give us the architecture of our model

- NDES gives us access to thematic roles, through a unique wh-word WHICH
- IS gives us the formalisation for WHICH: the inquisitive \exists
- ACGs give us the architecture of our model

EXCERPTS FROM THE GRAMMAR

EXCERPTS FROM THE GRAMMAR

Abstract Syntax
Some : $n \rightarrow (np \rightarrow s) \rightarrow s$
WHICH : n \rightarrow (np \rightarrow s) \rightarrow s

EXCERPTS FROM THE GRAMMAR

Abstract Syntax
SOME : $n \rightarrow (np \rightarrow s) \rightarrow s$
WHICH : $n \rightarrow (np \rightarrow s) \rightarrow s$

Semantic Interpretation

SOME := λ pq. !(\exists x. (px) \wedge (qx)) WHICH := λ pq. \exists x. (px) \wedge (qx)

where did every farmer feed a donkey 🗸

where did every farmer feed a donkey 🗸

where did every farmer feed which donkey X

where did every farmer feed a donkey 🗸

where did every farmer feed which donkey X

Every farmer fed a donkey

Every farmer fed a donkey

WHERE DID EVERY FARMER FEED A DONKEY?

WHERE DID EVERY FARMER FEED A DONKEY?

- Q (WHERE ($\lambda f.$ EVERY FARMER ($\lambda x.$ A DONKEY ($\lambda y.$ E-CLOS (f(DID-FEED y x)))))) (1)
- Q (WHERE (λf . A DONKEY (λx . EVERY FARMER (λy . E-CLOS (f (DID-FEED x y)))))) (2)

 $\exists x. \forall y. (farmer y) \rightarrow !((\exists z. (donkey z) \land !((\exists e. (fed e) \land (patient e z))))$

 \land (agent e y) \land (location e x)))) (1)

 $\exists x.!(\exists y.(donkey y) \land (\forall z.(farmer z) \rightarrow !((\exists e.(fed e) \land (patient e y))))$

 \land (agent e z) \land (location e x))))) (2)

DIALOGUES AND REASONING

- A₁ Does Charlie want tea or coffee?
- **B**₂ What kind of tea do you have?
- **A**₃ Earl Grey
- \mathbf{B}_4 I think Charlie would rather have coffee

- A₁ Does Charlie want tea or coffee?
- **B**₂ What kind of tea do you have?
- **A**₃ Earl Grey
- \mathbf{B}_4 I think Charlie would rather have coffee

tea > coffee
- **A**₁ Does Charlie want tea or coffee?
- **B**₂ What kind of tea do you have?

tea > coffee

- **A**₃ Earl Grey
- **B**₄ I think Charlie would rather have coffee **coffee > Earl Grey**

Compositionality in a simple corpus, Manuel Vargas Guzmán, Maria Boritchev, Jakub Szymanik, Maciej Malicki, JJ des GdR LIFT & TAL, 2022.

→ NNs pick up some **structure** from data:

- some **generalization** in the variations in proof length compositionality tests;
- sub-proofs play a role in learning.
- → Limited generalization:
 - unseen length experiment;
 - high sensitivity to the order of constants, ≫ overall structure of the KB.

CONCLUSION

THANK YOU FOR YOUR ATTENTION! QUESTIONS?

REFERENCES I

- Breitholtz, E. (2020). Enthymemes and Topoi in Dialogue: the use of common sense reasoning in conversation. Brill.
- Canavan, A. and Zipperlen, G. (1996). CALLFRIEND Spanish-Non-Caribbean Dialect LDC96S58.
- Champollion, L. (2011). Quantification and negation in event semantics.
- Ciardelli, I., Groenendijk, J., and Roelofsen, F. (2018). Inquisitive semantics. Oxford University Press.
- de Groote, P. (2006). Towards a montagovian account of dynamics. Proceedings of semantics and linguistic theory XVI.
- Montague, R. (1973). The proper treatment of quantification in ordinary English. In Approaches to natural language, pages 221–242. Springer.
- Norrick, N. (2017). Scose part 1: Complete conversations. English Linguistics, Department of English at Saarland University.

Oostdijk, N. (2001). The design of the Spoken Dutch Corpus. Language and Computers, 36:105–112.

- Parsons, T. (1995). Thematic relations and arguments. Linguistic Inquiry, pages 635–662.
- Winter, Y. and Zwarts, J. (2011). Event semantics and abstract categorial grammar. In Conference on Mathematics of Language, pages 174–191. Springer.